原题传送门
整理了下之前A的题
平面图可以转化成对偶图,然后(NlogN)的可以求出图的最小割(最大流)
算法合集有具体的讲解,有兴趣的可以在网上搜下或者向我要(QQ30056882)
/************************************************************** Problem: 1001 User: BLADEVIL Language: Pascal Result: Accepted Time:4124 ms Memory:158960 kb****************************************************************/ //By BLADEVILvar n, m :longint; pre, other, len, last :array[0..6001000] of longint; l :longint; heng, shu, xie :array[0..2010,0..2010] of longint; tot :longint; st, fin :longint; que, d :array[0..2000010] of longint; flag :array[0..2000010] of boolean; procedure connect(x,y,z:longint);begin inc(l); pre[l]:=last[x]; last[x]:=l; other[l]:=y; len[l]:=z;end; procedure init;var i, j :longint; min :longint;begin read(n,m); for i:=1 to n do for j:=1 to m-1 do read(heng[i,j]); for i:=1 to n-1 do for j:=1 to m do read(shu[i,j]); for i:=1 to n-1 do for j:=1 to m-1 do read(xie[i,j]); min:=maxlongint; if (n=1) or (m=1) then begin for i:=1 to n do for j:=1 to m do begin if heng[i,j]>0 then if min>heng[i,j] then min:=heng[i,j]; if shu[i,j]>0 then if min>shu[i,j] then min:=shu[i,j]; if xie[i,j]>0 then if min>xie[i,j] then min:=xie[i,j]; end; writeln(min); halt; end; tot:=2*(m-1)*(n-1); for i:=1 to tot do if i mod 2=0 then begin if ((i mod (2*(m-1)))>0) then begin connect(i,i+1,shu[i div (2*(m-1))+1,(i mod (2*(m-1))) div 2+1]); connect(i+1,i,shu[i div (2*(m-1))+1,(i mod (2*(m-1))) div 2+1]); end; if (i-2*m+1>0) then if ((i mod (2*(m-1)))>0) then begin connect(i,i-2*m+1,heng[i div (2*(m-1))+1,(i mod (2*(m-1))) div 2]); connect(i-2*m+1,i,heng[i div (2*(m-1))+1,(i mod (2*(m-1))) div 2]); end else begin connect(i,i-2*m+1,heng[i div (2*(m-1)),m-1]); connect(i-2*m+1,i,heng[i div (2*(m-1)),m-1]); end; end else begin connect(i,i+1,xie[i div (2*(m-1))+1,((i mod (2*(m-1)))+1) div 2]); connect(i+1,i,xie[i div (2*(m-1))+1,((i mod (2*(m-1)))+1) div 2]); end; st:=tot+1; fin:=tot+2; for i:=1 to (m-2) do begin connect(st,i*2,heng[1,i]); connect(i*2,st,heng[1,i]); end; for i:=2 to (n-1) do begin connect(st,i*2*(m-1),shu[i,m]); connect(i*2*(m-1),st,shu[i,m]); end; connect(st,2*(m-1),shu[1,m]); connect(st,2*(m-1),heng[1,m-1]); connect(2*(m-1),st,shu[1,m]); connect(2*(m-1),st,heng[1,m-1]); for i:=2 to (m-1) do begin connect((n-2)*2*(m-1)+2*i-1,fin,heng[n,i]); connect(fin,(n-2)*2*(m-1)+2*i-1,heng[n,i]); end; for i:=1 to (n-2) do begin connect(fin,(i-1)*2*(m-1)+1,shu[i,1]); connect((i-1)*2*(m-1)+1,fin,shu[i,1]); end; connect(fin,(n-2)*2*(m-1)+1,shu[(n-1),1]); connect(fin,(n-2)*2*(m-1)+1,heng[n,1]); connect((n-2)*2*(m-1)+1,fin,shu[(n-1),1]); connect((n-2)*2*(m-1)+1,fin,heng[n,1]);end; procedure main;var i, j :longint; h, t :longint; cur :longint; q, p :longint; begin que[1]:=st; filldword(d,sizeof(d) div 4,maxlongint div 10); d[st]:=0; t:=1; h:=0; while h<>t do begin h:=h mod 2000000+1; cur:=que[h]; flag[cur]:=false; q:=last[cur]; while q<>0 do begin p:=other[q]; if d[cur]+len[q]